

Collective Dynamics at RHIC

Nu Xu - LBNL

J. Fu, H.G. Ritter, K. Schweda, R. Snellings, N. Xu, Z. Xu, E. Yamamoto

. . .

Collective Dynamics at RHIC

- 1) What do we want to know?
 - QGP: partonic collectivity
- 2) What we know
 - Results from SPS and RHIC-I
- 3) How to get there?
 - Hadron spectra and v_2 , especially K_s , ϕ , Λ , Ξ , Ω , J/ψ , ...
- 4) Protons near beam rapidity

Introduction

- 1) Initial Condition
 - baryon transfer
 - E_T production
 - partons dof
- 2) System Evolves- parton/hadronexpansion
- 3) Bulk Freeze-out
 - hadrons dof
 - interactions stop

T vs. Mass Plot (SPS)

What We Know - RHIC I

- 1) At RHIC pbar/p, lbar/pbar ~ constant vs. centrality
- 2) At AGS, factor ~100 / SPS factor ~ 2 variation
 - => re-scatterings at hadronic stage reduced at RHIC!

Beam Energy Systematic

- 1) Smaller baryon chemical potential $\mu_B = 45 \text{ MeV}$ with $T_{ch} = 170 \text{ MeV}$ \Rightarrow **Approaching net-baryon free!**
- 2) Stronger transverse flow, β_T = 0.55(c)
 - ⇒ More explosive expansion !

BERKELEY LAB

What We Know - RHIC I

- 1) Integrated v2 increase with particle mass;
- 2) Hydro model results are consistent with data. But 'QGP' EOS used in hydro calculation!

Does v₂ signal parton flow?

STAR sub. to PRL, May 2002

Transverse collective flow

Heavier mass particles show stronger collective flow effect!

PHENIX: PRL88 242301(2002) / STAR: φ PRC65, 041901(02); Λ and Kaon: sub. to PRL

What We Know - RHIC I

- increase in <p_t> vs
 centrality → radial flow
- RQMD describes
 transverse motion
 reasonably well →
 hadronic re-scattering
- RQMD
 underestimates pbar
 yield due to large
 annihilation X-section
 → re-scattering at
 earlier stage?

BERKELEY LAB

What We Know - RHIC I

RQMD – re-scattering at hadronic stage spectra, not yields, not ratios HIJING – no re-scattering at hadronic stage centrality dependence pbar/p, lbar/pbar ratios not spectra

Copious scattering needed!
But not at the hadron stage!
Patonic flow?!

To 'see' it directly, spectra and v_2 , especially

 $K_s \phi \Lambda \Xi \Omega J/\psi \dots$

Slope parameters vs. mass

$$\varphi_i \propto exp \left[-\pi \frac{m_i^2 + p_t^2}{\kappa} \right]$$

$$\kappa = \kappa_0 * \sqrt{\boldsymbol{n}} = \kappa_0 * \rho_{gluon}$$

□ Small X-section limit: Ω, J/ψ

sensitive to collectivity at parton level?

At high energy, high gluon density leads to parton flow

100 M Au+Au mb events for v_2 of Ω , Ξ ,

Partonic Flow at RHIC?

"... that is the question.

(100M Au+Au events)

How to get there?

Discovery patonic collectivity - 'QGP'

Diagnostic bulk properties of 'QGP'

Important:

Scan collision geometry b

Scan colliding size A

Scan collision energy E

Upgrade issues

- 1) Faster Data Acquisition
- 2) TOF barrel
- 3) SVT: increase V⁰ efficiency by a factor of 2-7

Lots of heavy ion beam!